



National Institute for Public Health and the Environment Ministry of Health, Welfare and Sport

### Status and challenges in regulation of graphene

Eric Bleeker (RIVM)



### Introduction

- > Industrial chemicals regulation in Europe REACH
- Since 2006
- Concerns started to emerge on safe use of nanomaterials
- OECD Working Party on Manufactured Nanomaterials (WPMN) established in 2006
- > OECD Council recommendation (2013):

"[...] apply the existing international and national **chemical regulatory frameworks** or other management systems, **adapted to** take into account the specific properties of **manufactured nanomaterials** [...]"

Status and challenges in regulation of graphene



### Lessons learned from nanomaterials

- Uncertainty about specific legal obligations (applicability of data requirements)
- Uncertainty on appropriateness of the conventional hazard and risk assessment tools
  - increased importance of the physical properties of nanomaterials in their fate and behaviour
- These uncertainties could hamper society's ability to ensure responsible development of nanotechnologies
  - This will delay innovations



## Nanoforms in REACH

- > REACH adaptations in 2018 (Regulation (EU)2018/1881)
  - Definition of "nanoform" of a substance
  - Additional characterisation of nanoform
  - Additional requirements
    - Separate assessment of the nanoform
    - Some additional physicochemical parameters
    - Some adjustments in waivers

Name

>

- Particle size distribution
- > Surface chemistry
- > Shape
- Surface area

#### http://data.europa.eu/eli/reg/2018/1881/oj

Status and challenges in regulation of graphene 23 November 2023



### Graphene in REACH

- "a nanoform is a form of a natural or manufactured substance containing particles, in an unbound state or as an aggregate or as an agglomerate and where, for 50 % or more of the particles in the number size distribution, one or more external dimensions is in the size range 1 nm-100 nm, including also by derogation fullerenes, graphene flakes and single wall carbon nanotubes with one or more external dimensions below 1 nm."
- Nanospecific requirements apply
- > New recommendation on nanomaterial definition (2022):
  - [...] (c) the particle has a plate-like shape, where one external dimension is smaller than 1 nm and the other dimensions are larger than 100 nm. [...]

Commission Recommendation 2022/C 229/01: <u>https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32022H0614(01)</u>

Status and challenges in regulation of graphene



### Graphene – (not) just a carbon compound

- > Different from other carbon compounds often platelets
- > Huge range of different 'forms' 2D material





Status and challenges in regulation of graphene



### Graphene – (not) just a carbon compound

- Many (potential) applications that may benefit from graphene
- Behaviour and effects in humans and the environment are difficult to predict based on known nanoforms



Yang et al. 2018: 10.1080/14686996.2018.1494493



### **Identification complex**



# e.g. Graphene Council: Graphene Classification Framework:

Zhang et al. 2018: 10.1002/smll.201801983

**19 parameters** to describe the graphene form produced, e.g. production process, shape, number of layers, oxidation, functionalisation, etc. (www.thegraphenecouncil.org/page/GCF)

### **REACH:**

> Name

- Particle size distribution
- Surface chemistry
- Shape
- > Surface area







(A) Graphene

(B) Few-layer graphene

(C) Graphite





(E) Graphene oxide (GO)

Status and challenges in regulation of graphene 23 November 2023



### Registration at ECHA

Search for chemicals / regulated substances

graphene

Search for chemicals

#### 15 November 2023

| Name 🗘                                                                                                                        | EC / List no. 🗘      | CAS no. 🗘                          | вр   | OBL |
|-------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------------------|------|-----|
| Graphene                                                                                                                      | 801-282-5 <b>REA</b> | <b>CH</b> <sup>4</sup> registratio | on 🖳 |     |
| Graphene nanoplatelets having a predominant thickness of 1-10 layers with lateral dimension predominantly less than 2 microns | - Im                 | port notification                  | า    |     |
| Graphene nanoplatelets having a predominant thickness of 1-10 layers with lateral dimension predominantly less than 2 microns | - Im                 | port notification                  | า    |     |
| graphene oxide                                                                                                                | 942-699-3            | LP notification                    |      |     |
| Graphite IUPAC name: Graphene Nanoplatelets                                                                                   | <sup>231-955-3</sup> | CH registratio                     | on 🔍 | OBL |
| Reaction product of Graphite, acid-treated and potassium permanganate<br>Public name: Graphene oxide                          | 947-768-1 <b>REA</b> | CH registratio                     | on 📟 |     |



### Registrations

|                   | Graphene                                            | Reaction product of<br>Graphite, acid-treated<br>and potassium<br>permanganate | Graphite                                           |
|-------------------|-----------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------|
| Total t.p.a.      | ≥ 10 to < 100                                       | ≥ 10 to < 100                                                                  | ≥ 100.000 to < 1.000.000                           |
| Individual t.p.a. | ≥ 1 to < 10                                         | ≥ 1 to < 10                                                                    | ≥ 1.000                                            |
| Requirements      | Annex VII                                           | Annex VII                                                                      | Annex X                                            |
| Composition       | (set of) nanoform(s)<br>Monoconstituent / inorganic | (set of) nanoform(s)<br>UVCB / inorganic                                       | Bulk / Solid powder<br>Monoconstituent / inorganic |
| Shape             | Platelet                                            | Platelet                                                                       | No data                                            |

> Generally broad boundaries for (set of) nanoforms

> Acute toxicity appears limited, but lack of long-term toxicity data

Status and challenges in regulation of graphene 23 November 2023



### Graphene related materials – Toxicity

- > Most research on graphene oxides
- > Toxicity influenced by:
  - Agglomeration of material
  - Density of the material
  - Size, shape
  - Oxidation state
  - Way of interaction with (human) cells



 > EUON report: <u>"Assessment of the potential impact of graphene, graphene</u> oxide and other 2D materials on health, and the environment" → 8 recommendations on risk assessment of 2D materials



### 2D materials beyond graphene

 Studies on the health and the environmental impact involving 2D materials beyond graphene are still very limited



#### **Overall results divided by group of materials**

| Materials                                                                       | Toxicity                    | Ecotoxicity                 |
|---------------------------------------------------------------------------------|-----------------------------|-----------------------------|
| Graphene, few layer graphene,<br>graphene nanosheets and<br>graphene nanoflakes | Extensive information found | Extensive information found |
| Graphene oxide                                                                  | Extensive information found | Extensive information found |
| Reduced graphene oxide                                                          | Extensive information found | Extensive information found |
| Graphene nanoribbons                                                            | Limited information found   | No information found        |
| MXenes                                                                          | Limited information found   | Limited information found   |
| 2D boron nitride                                                                | Limited information found   | No information found        |
| Transition metal dichalcogenides                                                | Limited information found   | Limited information found   |
| Black phosphorus                                                                | Limited information found   | Limited information found   |
| Graphitic carbon nitride                                                        | Limited information found   | No information found        |



### Graphene related materials – Toxicity

*In vitro* and *in vivo* studies on toxicity of graphene materials have revealed that the toxic effects are induced by

- > the extent of material aggregation
- > the mode of interaction of graphene with the cells
- > the density of graphene (i.e. graphene nanoplatelets more toxic)
- the size, particulate state, oxygen content, or surface charge of graphene
- the nature of cells (i.e. the same dose of graphene oxide is more toxic to fibroblasts than to epithelial cells)



### 8 recommendations (euon.echa.europa.eu/documents/2435000/3268573/echa 2021 286 graphene study.pdf)

- 1. The application of the definitions and available documentary standards should allow to **clearly identify the type of graphene** and 2D materials used for the different applications and to evidence potential toxicity issues and risks.
- 2. Multiple characterization techniques should be applied to clearly identify and quantify graphene materials in cells, tissues, organs and the environment.
- 3. Conclusions on toxicity and ecotoxicity should not be generalized and need to be associated to a precise description of the material used in the tests.
- 4. When health and environmental risks are reported or identified for a specific graphene or 2D material, **doses and exposure scenarios should be considered** for their manipulation and use.
- 5. To assess **chronic toxicity** of graphene and 2D materials protocols for repeated-dose studies should be considered.
- 6. To assess potential toxicity of graphene and 2D materials relevant **immune suppressed or diseased animal models** should be considered.
- 7. To assess the **potential genotoxic risks**, reliable testing methods should be developed; response mechanisms associated with genotoxicity should be evaluated in depth; appropriate description of the type of graphene and 2D material tested should be reported; and different dosages and exposure times should be applied.
- 8. The solvents and the molecules used to exfoliate bulk materials into single- or few-layer graphene or 2D materials might remain as residues in the end-product, likely affecting the (eco)toxicity results. It is recommended to consider and include these **potential impurities in the tests** to exclude their implication and responsibility on (eco)toxicity.

### 8 recommendations - summarised

- Importance of detailed identification and characterisation (also in test systems)
- Dosimetry and exposures in test systems (relevance in risk assessment)
- Importance of data on chronic toxicity, immunotoxicity, genotoxicity (test methods used, reporting on methods and results)
- Role of impurities in toxicity testing (residues from production processes)

Does this require method adaptations?



### Regulatory challenges

- > Diversity and complexity of these materials
  - Characterisation
- > Current regulation may not align with complexity
  - Mixture toxicity?
- Keep pace with innovation
  - New materials entering the market
  - Foresight system for regulatory preparedness
    - Need for method adaptations? Need for new methods?
    - Most important data gaps?
    - What would be the most important next steps?

Status and challenges in regulation of graphene

23 November 2023

Hu et al. 2022: <u>10.1038/s44160-022-00068-7</u>







### Next steps

- > NL intends to start a substance evaluation in 2025
  - Reaction product of Graphite, acid-treated and potassium permanganate
- > ECHA will do a Compliance Check
  - Substance identity
- > Identify test method needs
  - New/adaptation of Test Guidelines?
- > Raising awareness in regulatory arena
  - Regulatory preparedness

representative structure(s) echa.europa.eu/nl/substance-information/-/substanceinfo/100.260.251







## Thank you for your attention!



Status and challenges in regulation of graphene

23 November 2023